3D Sparse Representations
نویسندگان
چکیده
In this chapter we review a variety of 3D sparse representations developed in recent years and adapted to different kinds of 3D signals. In particular, we describe 3D wavelets, ridgelets, beamlets and curvelets. We also present very recent 3D sparse representations on the 3D ball adapted to 3D signal naturally observed in spherical coordinates. Illustrative examples are provided for the different transforms.
منابع مشابه
Optimally Sparse Representations of 3D Data with C2 Surface Singularities Using Parseval Frames of Shearlets
This paper introduces a Parseval frame of shearlets for the representation of 3D data, which is especially designed to handle geometric features such as discontinuous boundaries with very high efficiency. This system of 3D shearlets forms a multiscale pyramid of well-localized waveforms at various locations and orientations, which become increasingly thin and elongated at fine scales. We prove ...
متن کاملSparse Representations for Three-Dimensional Range Data Restoration
In this paper, the problem of denoising and occlusion restoration of 3D range data based on dictionary learning and sparse representation methods for image denoising is explored. We apply these techniques after converting the noisy 3D surface into one or more images. We present experimental results on the proposed approaches.
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملDeep Marching Cubes: Learning Explicit Surface Representations
Existing learning based solutions to 3D surface prediction cannot be trained end-to-end as they operate on intermediate representations (e.g., TSDF) from which 3D surface meshes must be extracted in a post-processing step (e.g., via the marching cubes algorithm). In this paper, we investigate the problem of end-to-end 3D surface prediction. We first demonstrate that the marching cubes algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017